
4

The Need for Hardware-Software Leakage Contracts

Defining a Space of Contracts

Synthesizing Contracts from Simulation Results

Experimental Evaluation

Synthesizing Hardware-Software Leakage Contracts
for RISC-V Open-Source Processors

Gideon Mohr Marco Guarnieri Jan Reineke

μARCH

Instruction Set Architecture (ISA)

High-level language

Microarchitecture

No guarantees
about side
channels

Independent of
microarchitecture

Allows arbitrary
optimizations

μARCH

Leakage Contracts: ISA + Instruction-level leakage specification

High-level language

Microarchitecture

Program securely
using the contract

Captures possible
information leakage

at ISA level

But how can we obtain a
leakage contract for existing
microarchitectures?

?

Takes multiple
cycles

μARCH 𝜇𝜇1

- Observations

ISA lw t0, 0(a0) mul t1, t0, t0 lw t2, 0(t1)

- Observations

𝜇𝜇2 𝜇𝜇3 𝜇𝜇4- Simulation

- Simulation

Cy
cl

e
ac

cu
ra

te
In

st
ru

ct
io

n
le

ve
l

1
≠ ≠2 1 2⇒

A correct contract must satisfy this implication:

Contract yields
different

observations

The contract captures what makes two
executions attacker distinguishable!

Attacker can
distinguish two

executions

Composition of
multiple contract

atoms

Condition on
ISA state

Leakage Part of
the ISA state

“For every division, the divisor leaks due to timing
for every branch we can observe whether the branch was taken.”

and

Applies to
instructions of a

certain type

Leaks a property of
the instruction‘s

inputs

Memory addresses
& values

Immediate
values

mul a0, t0, t1 a0 ← t0 * t1

lw a1, -4(t2) a1 ← mem[t2 + (-4)]

Instruction
type

Register names
& values

Test cases

Contract
Atoms

Simulation
Integer Linear

Program

1 ≠

≠

2

X X

For each atom X :
?

1 2

Refinement of
Template

D
C

A
B

C
A

B

Contract

?
Minimize false

positives

Correctness

Precision

Objective function:

Constraints:

Obtained on the Ibex core, w.r.t
an evaluation set with 2,000,000

test cases.
Sensitivity:

99.94%

Size of Training Set

Size of Training Set

Precision after
refinement:

72.11%

Program 1

Program 2

Leak alignment
of addresses

For more details, have a look at our paper
and the presentation on YouTube.

All results are available on Zenodo.

for all attacker-
distinguishable test cases d

for all attacker-
indistinguishable test cases i

li a0, 0x100 a0 ← 0x100
lw a1, 0(a0) a1 ← mem[a0]

li a0, 0x102 a0 ← 0x102
lw a1, 0(a0) a1 ← mem[a0]

	Synthesizing Hardware-Software Leakage Contracts �for RISC-V Open-Source Processors

