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Abstract—Microarchitectural attacks compromise security by
exploiting software-visible artifacts of microarchitectural opti-
mizations such as caches and speculative execution. Defending
against such attacks at the software level requires an appropriate
abstraction at the instruction set architecture (ISA) level that
captures microarchitectural leakage. Hardware-software leakage
contracts have recently been proposed as such an abstraction.

In this paper, we propose a semi-automatic methodology for
synthesizing hardware-software leakage contracts for open-source
microarchitectures. For a given ISA, it relies on human experts
to (a) capture the space of possible contracts in the form of
contract templates and (b) to devise a test-case generation strategy
to explore a microarchitecture’s potential leakage. For a given
implementation of an ISA, these two ingredients are then used to
automatically synthesize the most precise leakage contract that is
satisfied by the microarchitecture.

We have instantiated this methodology for the RISC-V instruc-
tion set and applied it to the Ibex and the CVA6, two open-source
processors. Our experiments demonstrate the practical applicability
of the methodology and uncover subtle and unexpected sources of
microarchitectural leakage.

I. INTRODUCTION

Microarchitectural attacks [13], [22], [23], [33], [38] com-
promise the security of programs by exploiting software-visible
artifacts of microarchitectural optimizations such as caches
and speculative execution. Defending against such attacks at
the software level is challenging: instruction set architectures
(ISAs), the traditional hardware-software interface, abstract from
microarchitectural details and thus do not give any guarantees
w.r.t. microarchitectural attacks.

Hardware-software leakage contracts [20], [36] (short: leakage
contracts) have recently been proposed as a new security
abstraction at the ISA level to fill this gap. Such contracts
aim to capture possible microarchitectural side-channel leaks by
associating leakage traces, i.e., sequences of leakage observa-
tions, with ISA-level executions. For example, a contract could
expose the addresses of load and store instructions as leakage
observations to capture data cache leaks. Similarly, a contract
could expose the operands of division instructions to capture
leakage via operand-dependent latencies. Given a contract that
faithfully captures the microarchitectural leakage of a processor,
it is then possible to program the hardware securely by making
sure that all leakage observations are independent of secrets.

However, most of today’s processor designs lack any kind
of formal specification of their microarchitectural leakage. In
this work, we tackle this gap by proposing a semi-automatic
methodology for synthesizing leakage contracts from open-
source processor designs.

Our methodology consists of four steps:
1) Definition of Contract Template. A human expert

determines a set of contract atoms that capture potential

instruction-level leakage observations. For example, a contract
atom may expose the value of the register operand of a memory
instruction. The set of all contract atoms forms the contract
template. Any set of contract atoms from the contract template
is a candidate contract.

2) Test-Case Generation. A human expert devises a test-case
generation strategy. Each test case consists of two ISA-level
programs with fixed data inputs. These test cases are used to
exercise and analyze a processor’s microarchitectural leakage.

3) Evaluation of Test Cases. Test cases are automatically
evaluated on the target processor design to determine which test
cases are distinguishable, i.e., lead to distinguishable microarchi-
tectural executions on the processor. Distinguishable test cases
expose actual leaks that need to be accounted for at contract
level. Additionally, test cases are also automatically evaluated
on the contract template to derive the set of distinguishing
atoms, i.e., those atoms that distinguish the two programs.
For instance, an atom exposing the value of register operands
for memory instructions will distinguish programs accessing
different addresses.

4) Automatic Contract Synthesis. Based on the results of
the test-case evaluation, a contract, that is, a set of contract atoms,
is automatically synthesized from the distinguishing atoms
associated with attacker-distinguishable test case. Our approach
ensures that the synthesized contract is satisfied by the processor
design on all test cases, i.e., it captures all leaks exposed by
the test cases on the processor. Moreover, it also ensures that
the synthesized contract is the most precise such contract, i.e.,
it distinguishes the fewest attacker-indistinguishable test cases.

The proliferation of the open-source RISC-V ISA [10]
and its growing ecosystem is promising in this context for
two reasons: (1) The simplicity and modularity of the ISA
provides a good foundation for the definition of contract
atoms. (2) The growing body of open-source RISC-V processor
designs of varying complexity provides natural targets for
contract synthesis. Leveraging the RISC-V Formal Interface [5],
we have instantiated our contract-synthesis methodology for
the RISC-V ISA and applied it two open-source processor
designs: Ibex [3] and CVA6 [1]. Our experiments reveal subtle
previously undocumented cases of microarchitectural leakage
and demonstrate the practical applicability of our methodology.

To summarize, our main contributions are:
• A methodology for synthesizing hardware-software leakage

contracts from open-source processor designs.
• The definition of a concrete contract template for the RISC-

V ISA and a corresponding test-case generation strategy.
• The implementation of a contract synthesis toolchain and its

application to two open-source RISC-V processor designs.



II. PRELIMINARIES

A. Instruction Set Architectures and RISC-V

Instruction-set architectures (ISAs) define the software-visible
interface of a processor. For instance, they define the ar-
chitectural state, the set of supported instructions, and how
these instructions modify the architectural state. We model an
ISA as a state machine capturing the execution of programs
one instruction at a time. Formally, an ISA is a function
ISA : ARCH → ARCH that maps each architectural state
σ ∈ ARCH to its successor ISA(σ), obtained by executing the
instruction to be executed in σ. To capture an entire execution,
we denote by ISA∗(σ) the sequence of states reached from σ by
successive application of ISA, i.e., ISA∗(σ) := [σ0, σ1, σ2, . . .]
with σ0 = σ and σi+1 = ISA(σi) for all i ≥ 0.

B. Microarchitectures

Microarchitectures are concrete implementations of instruc-
tion set architectures in processors, which often contain complex
performance-enhancing optimizations. They operate at cycle
granularity rather than at instruction granularity. Thus, we model
them as state machines that define how the processor’s state
evolves cycle-by-cycle. Formally, a microarchitecture is a func-
tion IMPL : IMPLSTATE → IMPLSTATE on the set of microar-
chitectural states IMPLSTATE = ARCH × µARCH that captures
how the microarchitectural state evolves from one cycle to the
next. Each microarchitectural state σ ∈ IMPLSTATE consists of
an architectural part σISA ∈ ARCH and a microarchitectural part
σIMPL ∈ µARCH, which models the state of microarchitectural
components like caches and branch predictors. Similarly to
ISA∗(σ), IMPL∗(σ) is the sequence of microarchitectural states
reached from σ by successive applications of IMPL.

C. Microarchitectural Attackers

Programs that operate on secret data may leave traces of this
secret data in the microarchitectural state. Microarchitectural
attacks extract information about secrets from the microarchi-
tectural state by leveraging software-visible side-effects [13],
[22], [23], [33], [38], mostly affecting a program’s execution
time. In this paper, we consider (passive) microarchitectural
attackers that can observe and extract information from the
microarchitectural state. Formally, we model a microarchitec-
tural attacker as a function µATK : IMPLSTATE → ATKOBS
that maps microarchitectural states to attacker observations.
Common attacker models studied in the literature, like the
one exposing the timing of instruction retirement [32] or the
one exposing the final state of caches [15], [38], can be
instantiated in our setting. Given an attacker model, two exe-
cutions IMPL∗(σ) and IMPL∗(σ′) are attacker distinguishable
if µATK(IMPL∗(σ)) 6= µATK(IMPL∗(σ′)), where we lift µATK
to sequences by applying it to each element.

D. Hardware-Software Leakage Contracts

The goal of leakage contracts [20] it to capture microarchitec-
tural side-channel leakage at the ISA level to allow reasoning
about side-channel security of programs without having to
explicitly consider their microarchitectural execution. To this
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Fig. 1. High-level steps of our contract-synthesis methodology.

end, contracts associate leakage traces, i.e., sequences of leakage
observations, with ISA-level executions.

A contract is a function CTR : ARCH → CTROBS that maps
architectural states to contract observations. As an example, a
contract could expose the addresses of load and store instructions
to capture possible leakage via the data cache. Two architectural
states σ and σ′ are contract distinguishable if CTR(ISA∗(σ)) 6=
CTR(ISA∗(σ′)), where we lift CTR to sequences by applying
it to each element of the sequence.

Microarchitecture IMPL satisfies contract CTR for instruction-
set architecture ISA under attacker model µATK if all contract-
indistinguishable executions are also attacker-indistinguishable:

∀σ, σ′ ∈ IMPLSTATE : σIMPL = σ′IMPL =⇒
CTR(ISA∗(σISA)) = CTR(ISA∗(σ′ISA)) =⇒

µATK(IMPL∗(σ)) = µATK(IMPL∗(σ′))

Note that we require the microarchitectural parts of σ and σ′

to initially be the same. Otherwise, the executions could be
attacker-distinguishable due to initial differences rather than due
to leakage during the execution.

The benefit of contract satisfaction is that it allows reasoning
about side-channel security directly at the ISA level: A program
that does not leak any secret information according to the
contract is also guaranteed not to leak any secret information to
attackers on any microarchitecture that satisfies the contract [20].

III. CONTRACT-SYNTHESIS METHODOLOGY

Our goal is to synthesize contracts directly from a processor’s
register-transfer level (RTL) design. Figure 1 illustrates the high-
level steps of our contract-synthesis methodology outlined in
§I. In the following, we describe each step in more detail.

A. Contract Templates

The basic building blocks of contracts are contract atoms.
Contract atoms capture potential leakage observations at the
instruction level. Formally, a contract atom A is a pair (πA, φA)
where πA : ARCH → B determines whether the contract
observation is applicable in a particular architectural state, and
φA : ARCH → OA is the observation function that maps an
architectural state to the atom’s observation. For example, a
contract atom A could expose the divisor operand of a division
instruction: πA would hold whenever the instruction to execute
is a division, and φA would return the value of the divisor.

A contract template T is a set of contract atoms. A subset
S ⊆ T of the template defines a candidate contract CTRS as
follows: CTRS(σ) = {φA(σ) | A ∈ S ∧ πA(σ)}, i.e., it reveals
the observations of all atoms that are applicable in a given state.
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B. Test-Case Generation

Our goal is to find a contract that is satisfied by the
microarchitecture while being as precise as possible, i.e. to
find a contract that distinguishes as few executions as possible.
Achieving this goal requires (1) to determine which contracts
from the template are satisfied by the microarchitecture, and
(2) to measure the precision of such contracts.

Ideally, one would like to formally verify contract satisfaction.
However, contract verification techniques [36] do not yet
scale to processors of the complexity of e.g. the CVA6.
Thus, we resort to a testing-based approach and evaluate
contract satisfaction on systematically-generated test cases.
Formally, a test case is a pair (σ, σ′) of microarchitectural
states such that σIMPL = σ′IMPL. A test case is attacker
distinguishable if µATK(IMPL∗(σ)) 6= µATK(IMPL∗(σ′)).
A test case is atom distinguishable for an atom A if
CTR{A}(ISA∗(σISA)) 6= CTR{A}(ISA∗(σ′ISA)). By construc-
tion, a test case is contract distinguishable for contract CTRS if it
is atom distinguishable for at least one atom in S. Thus, checking
atom distinguishability for all atoms is sufficient to characterize
contract distinguishability for the entire contract template.

Test cases also allow to measure the precision of a contract.
For this, we adopt the standard notion of precision used in the
evaluation of binary classifiers: Precision = TP

TP+FP , where TP
is the number of true positives, i.e., test cases that are contract
distinguishable and attacker distinguishable, and FP is the num-
ber of false positives, i.e., test cases that are contract distinguish-
able but not attacker distinguishable. Higher precision contracts
are desirable as they rule out fewer programs at the contract
level that could actually be executed securely on the processor.

Our methodology requires a human expert to devise a test-case
generation strategy used to generate the set of test cases TC.

C. Test-Case Evaluation

Given a set of test cases TC, we need to determine for each
test case (1) whether it is attacker distinguishable, and (2)
which contract atoms distinguish it. Attacker distinguishability
can be determined via simulation of the microarchitecture with
a suitable attacker model. Similarly, atom distinguishability can
be determined by evaluating all contract atoms in parallel on
top of a simulation of the instruction set architecture.

The test-case evaluation phase has two outputs: (1) The set of
attacker-distinguishable test cases Dist ⊆ TC. (2) For each test
case t, the set of distinguishing atoms distinguishing(t) ⊆ T .

D. Contract Synthesis

We now show how to use integer linear programming (ILP)
to synthesize a contract from the template that distinguishes all
attacker-distinguishable test cases TC and maximizes precision.

The ILP uses a boolean variable sA for each atom A in the
contract template T to encode whether the atom is selected to be
part of the synthesized contract or not. Further, the ILP uses a
boolean variable ct for each attacker-indistinguishable test case
t ∈ Indist = TC \ Dist, which, using constraints detailed below,
is forced to be 1 for test cases that are contract distinguishable
and thus are false positives.

Maximizing precision is equivalent to minimizing the number
of false positives, as the number of true positives is the same for
all correct contracts. Thus, the objective function of the ILP is
min

∑
t∈Indist ct. To ensure that only correct contracts are con-

sidered, we introduce the following constraint for each attacker-
distinguishable test case t ∈ Dist:

∑
A∈distinguishing(t) sA ≥ 1,

i.e., at least one atom that distinguishes t must be selected
for the contract. For each attacker-indistinguishable test case
t ∈ Indist and each contract atom A ∈ distinguishing(t) we
further introduce the constraint: sA ≤ ct. This ensures that ct
can only be 0 for test cases that are not contract distinguishable.

From the solution to the ILP we extract the synthesized
contract via the variables sA and the false-positive test cases
via the variables ct.

E. Refinement of the Contract Template

In addition to returning a contract that maximizes precision,
our implementation also returns a ranking of the contract atoms
according to the number of false positives caused by their inclu-
sion in the contract and the corresponding test cases. Inspecting
these test cases allows a human expert to identify contract atoms
that should be refined to obtain a more precise contract.

IV. INSTANTIATING THE METHODOLOGY FOR RISC-V

We instantiated the above methodology for the RISC-V
instruction set, more precisely its I and M subsets.

A. RISC-V Contract Template

Instructions of the same type usually show similar leakage
behavior, e.g., if one division operation leaks the divisor, then
other division operations likely also leak the divisor. Based on
this intuition, we identified several potential leakage sources
and added a contract atom for each instruction type and each
applicable leakage source to the contract template. For such an
atom, πA determines whether the current instruction has the
given type and φA extracts the corresponding leakage from the
architectural state. For example, if the division leaks the divisor,
which is stored in the register RS2, the contract atom would be
(DIV,REG_RS2) meaning that for every division, the value of
register RS2 is leaked.

We first defined a base template capturing the architectural
state that directly influences the execution of an instruction:
• Instruction leakages (IL) expose values from an instruc-

tion’s encoding: The operation OP, the destination and source
registers RD, RS1, and RS2, and the immediate value IMM.
• Register leakages (RL) expose the values of registers: The

values of the source registers REG_RS1 and REG_RS2 before
execution and the final value of the destination register REG_RD.
• Memory leakages (ML) expose the memory addresses and

memory contents accessed by an instruction: MEM_R_ADDR
and MEM_W_ADDR expose the accessed addresses, whereas
MEM_R_DATA and MEM_W_DATA expose the accessed content.

During evaluation, we noticed that the above categories are
sufficient but that the precision of the contract can be improved
by adding the following contract atoms:
• Alignment leakages (AL) expose the alignment of a mem-

ory access: IS_WORD_ALIGNED exposes whether the last two
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bits of the memory address are 00 and IS_HALF_ALIGNED
exposes whether the last two bits of the address are not 11.
• Branch leakages (BL) expose whether a branch is taken

or not: This can be BRANCH_TAKEN for taken branches and
NEW_PC to indicate the target of the branch. The latter one
also applies to unconditional jumps.
• Data-dependency leakages (DL) expose data dependencies

in the program: RAW_RS1_n, RAW_RS2_n, RAW_RD_n, and
WAW_n, respectively, indicate Read-After-Write dependencies on
register RS1, RS2, and RD and Write-After-Write dependencies
within a distance of n instructions.

We remark that not all atoms are applicable to every
instruction type, e.g. some instructions do not have an immediate
value, which cannot be leaked. With a maximum distance of
n = 4, the above template results in a total of 762 atoms.

B. Test-Case Generation

The set of test cases used for the simulation has a large effect
on the synthesized contract, as the synthesis algorithm cannot
know about leakages that are not exposed by the set of test
cases. Thus, ideally the test-case generation algorithm should
consider potential microarchitectural implementations and their
potential leakage. Additionally, in order to obtain a concise
contract from the given contract template, the set of contract
atoms should be considered when generating the test cases.

The test-case generation method we use is simple but has
shown effective on the tested targets. Note that we only generate
the architectural state and fix the initial microarchitectural part of
the microarchitectural state to allow reusing test cases for differ-
ent microarchitectures. Each test case consists of two programs
which aim to be differentiable by one specific contract atom.

Each program consists of three parts, of which only the
second part differs among the two programs in the test case:
(1) First, we initialize every architectural register to a randomly
selected value. (2) Next, we try to trigger the leakage of the
contract atom we want to test for. For this, we generate a
random instance of the given instruction type. We then derive
two sequences of instructions that could be differentiated by
the given atom, e.g., if we want to test whether the immediate
value leaks, we alter the immediate value or if we want to test
whether the memory contents that are read leak, we insert an
earlier instruction in both programs writing different values to
the same address. (3) Finally, we append randomly selected
instructions that aim to surface the leakage and to make sure
all instructions from (2) are executed completely.

C. Attacker Model

We consider an attacker that can observe the timing of
instruction retirements at cycle granularity. Our implementation
of this attacker model relies on the RISC-V Formal Interface
(RVFI) [5], a standard interface for RISC-V processors expos-
ing information about the execution of programs, including
the cycles at which instructions retire. RVFI simplifies the
interaction with the microarchitecture and allows reusing most
of our implementation for any processor implementing it.

By instantiating two instances of the respective core and sim-
ulating the execution of both programs of a test case in parallel,

our implementation determines attacker distinguishability by
comparing the cycles at which instructions retire in the two
programs. Other attacker models could be implemented either
using the RVFI or by exposing the required signals directly
from the design.

D. Identifying Distinguishing Atoms

To determine the distinguishing atoms for a test case, we
need to evaluate all contract atoms on top of an architectural
simulation of both programs of a test case.

However, as long as the microarchitecture correctly imple-
ments the ISA, the sequence of architectural states can also be
extracted from the microarchitectural states upon instruction
retirements [36]. Thus our implementation piggy backs on the
simulation of the microarchitecture described in §IV-C and it
uses the RVFI to extract the relevant parts of the architectural
states whenever an instruction retires. The simulation produces
a VCD waveform which is then analyzed to evaluate all contract
atoms and thus to determine the distinguishing atoms of a test
case. Adaptation to other cores that support the RVFI should
be straightforward.

V. EXPERIMENTAL EVALUATION

We evaluate our methodology on two open-source RISC-V
cores, Ibex [3] and CVA6 [1], both in a configuration imple-
menting RV32IMC. Our methodology allowed us not only to
obtain precise contracts for these cores, but also to analyze the
impact of the test-case generation method and the granularity
of the contract template.

A. Experimental Setup

To enable the simulation of test cases we first convert the
processor sources from SystemVerilog to standard Verilog using
sv2v [6] for Ibex and Yosys [8] with the Yosys-systemverilog
plugin [7] for CVA6. and then compile and execute the two
cores embedded in a testbench using Icarus Verilog [4]. In both
cases, some manual adjustments to the processors were needed
to eliminate unsupported SystemVerilog constructs.

Both cores support the RISC-V Formal Interface, and we
use it to extract the attacker observations and to determine
the distinguishing atoms as described in §IV-C and §IV-D.
The contract synthesis algorithm is implemented in Java using
Google’s OR-Tools [2] to solve the integer linear program.

B. Ibex Core

We first synthesized a contract for the Ibex core using the base
contract template described in Section IV-A. To this end, we used
100,000 test cases for synthesis and evaluated the performance
of the obtained contract using an independent set of 2,000,000
test cases. The results allowed us to refine the contract template
(as described in Section IV-A) by adding alignment leakages
(AL), branch leakages (BL), and data-dependency leakages (DL).

Figure 2 shows the precision of the obtained contracts for
different contract templates in terms of the number of test cases
used for synthesis (from 0 to 100,000). Some leakage sources
are only discovered after a while, e.g., the first data-dependency
leakages are discovered after about 10,000 test cases, which
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explains the drop in precision for templates that do not include
DL at that point. We observe that the refined templates lead
to an increase in precision as they allow for more fine-grained
leakage contracts. Data-dependency leakages (DL), in particular,
enable significant precision improvements.

Figure 3 shows the sensitivity of the synthesized contracts
for the full contract template depending on the number of
test cases used for synthesis. We adopt the standard notion
of sensitivity used in the evaluation of binary classifiers:
Sensitivity = TP

TP+FN , where FN is the number of false
negatives. Initially, sensitivity increases rapidly, as additional
test cases frequently reveal new sources of leakage. After the
first 15,000 test cases, however, the curve flattens. The final
contract has a sensitivity of 99.93%.

Finally, we synthesized a contract, summarized in Table I,
using the larger set of 2,000,000 test cases. In total, the
synthesized contract includes 82 atoms. 3 indicates that all
instructions in this category show leakages in the respective
category (as introduced in Section IV-A), 7 indicates that no
leakages were found, ◦ indicates that there are some leakages
in this category, but not all instructions have these leakages,
and - indicates that the atom does not apply to this category.
The distance n in the DL category is always 1.

Next, we overview some of our findings: (1) Our experiments
and the synthesized contracts show that the Ibex core leaks
whether memory accesses are aligned or not. Indeed, the
documentation of the Ibex core confirms that requests on
the memory interface are always aligned to a word boundary,
which is compatible with our observation, but the impact on
information leakage had not been established before. (2) We
also discovered that the timing of branch instructions depend
on whether the branch is taken or not taken even if the branch
target is the same in both cases, e.g., BEQ r1 r2 4 jumps to
the next instruction independently of r1 and r2.

C. CVA6 Core

We similarly analyzed the CVA6 core. A summary of the
contract obtained using 500,000 test cases is shown in Table II.
In total the synthesized contract consists of 77 atoms.

The CVA6 core uses a more complex memory interface
that does not expose anything about a specific memory access
in the analyzed setup. We remark that, even though the
CVA6 features a simple branch predictor, the contract template
originally composed for the Ibex, was sufficient to capture the
CVA6’s leakage.

As the CVA6 core has a deeper and more complex pipeline
than the Ibex, data and control dependencies can have a more
pronounced effect in the CVA6 core, which is reflected in the
synthesized contract: While the data dependencies all have a
distance of n = 1 as forwarding is effective here, we observe
distances of up to n = 4 due to control dependencies upon
branch instructions.

D. Computation Time

Table III compares the execution time of the contract synthesis
algorithm for the two cores. The simulation of a test case on
the CVA6 core is much slower than on the Ibex core, which is
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Fig. 2. Precision of contracts (y-axis) w.r.t. 2,000,000 test cases for different
contract templates starting from the base contract (IL+RL+ML) depending on
the number of test case (x-axis) used for contract synthesis.
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test cases (x-axis) used for contract synthesis. Note the logarithmic x-axis.

due to the much higher complexity of the design and due to the
translation into standard Verilog using Yosys. However, as can be
seen, the contract synthesis algorithm is still able to synthesize
a contract for the CVA6 core in a reasonable amount of time.

VI. RELATED WORK

Leakage contracts: Leakage contracts [20], which our method-
ology builds on, are an abstraction for capturing timing leaks
at ISA level. The leaks captured in a contract are formally
connected with the actual timing leaks in a hardware imple-
mentation. There are several tools for reasoning about contracts:
for verifying contract satisfaction against RTL processor de-
signs [11], [36], for detecting contract violations for black-box
CPUs [12], [27]–[29], and for verifying program security w.r.t.
a given contract [16], [19]. Contracts synthesized using our
methodology may serve as inputs to these tools.

TABLE I
SYNTHESIZED CONTRACT FOR THE IBEX PROCESSOR.

IL RL ML AL BL DL

Arithmetic instructions ◦ ◦ - - - ◦
Division, Remainder 7 ◦ - - - ◦
Multiplication ◦ 7 - - - 3

Loads ◦ 7 7 3 - 7
Stores ◦ 7 7 7 - 7

Branch instructions ◦ 7 - - 3 7

TABLE II
SYNTHESIZED CONTRACT FOR THE CVA6 PROCESSOR.

IL RL ML AL BL DL

Arithmetic instructions ◦ ◦ - - - ◦
Division, Remainder ◦ ◦ - - - ◦
Multiplication 7 ◦ - - - ◦

Loads ◦ 7 7 7 - ◦
Stores 7 ◦ 7 7 - 7

Branch instructions 7 7 - - 3 ◦
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TABLE III
PERFORMANCE MEASUREMENTS FOR CONTRACT SYNTHESIS USING 100,000

TEST CASES ON AN AMD RYZEN THREADRIPPER PRO 5995WX WITH
512GB OF RAM USING UP TO 128 THREADS.

Ibex CVA6

Compilation of the testbench 7.2 s 2123 s
Simulation of a single test case 0.2 s 88 s
Extraction of distinguishing atoms 175ms 75ms
Computation of the contract 15.6 s 16 s

Overall computation time 5.3min 1175min

Modeling timing leaks: There are multiple formal approaches
for studying timing leaks. Most of them capture leaks at
program level: from simple models associated with “constant-
time programming” [9], [26] to more complex ones capturing
leaks of transient instructions [14], [16], [19], [30], [34]. Other
approaches, instead, capture leaks on simplified processor
models [18], [24], [35]. Our work enables synthesizing program-
level models from actual processor implementations, while
previous approaches rely on manually written models that have
no formal connection to particular concrete processors.
Detecting leaks through testing: Revizor [28], [29] and Scam-
V [12], [27] search for contract violations for black-box CPUs.
However, they can only be applied post-silicon and require
physical access to a CPU. Other approaches [17], [25], [37] aim
to detect leaks by analyzing hardware measurements without
relying on leakage contracts but, again, apply only post-silicon.
Finally, SpecDoctor [21] and SigFuzz [31] focus on detecting
microarchitectural timing side channels in RTL designs in the
pre-silicon phase. In contrast to our work they do not aim to
characterize leakage at ISA level.

VII. CONCLUSION

ISA-level models of the information leaked microarchi-
tecturally by processors are a critical component for the
development of systems resistant to microarchitectural attacks.
In this paper, we showed how to semi-automatically synthesize
such models, in the form of hardware-software leakage contracts,
directly from RTL processor designs. This allowed us to derive
ISA-level descriptions of leakage for two open-source RISC-V
cores, Ibex and CVA6, which so far lacked a formal specification
of their microarchitectural leakage properties.

We will open source our toolchain and make the leakage
contracts for the Ibex and the CVA6 available to the community.
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[10] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for RISC-V,” Tech. Rep. UCB/EECS-2014-146, Aug 2014.

[11] R. Bloem, B. Gigerl, M. Gourjon, V. Hadzic, S. Mangard, and R. Primas,
“Power contracts: Provably complete power leakage models for processors,”
in CCS, 2022.

[12] P. Buiras, H. Nemati, A. Lindner, and R. Guanciale, “Validation of side-
channel models via observation refinement,” in MICRO-54. ACM, 2021.

[13] J. V. Bulck et al., “Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution,” in USENIX Security, 2018.

[14] S. Cauligi, C. Disselkoen, K. V. Gleissenthall, D. Tullsen, D. Stefan,
T. Rezk, and G. Barthe, “Constant-time foundations for the new Spectre
era,” in PLDI, 2020.
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[19] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“SPECTECTOR: Principled detection of speculative information flows,”
in IEEE S&P, 2020.
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