
Automatic Inference of Hardware-Software Contracts
for Open-Source Processors

Gideon Mohr
Saarland University

Hardware-Software Contracts

1/22

Background

ISA

ISA + Contract

Microarchitecture

Software

implement

target

side-
channel
side-
channel

target

implement &
satisfy

side-
channel

2/22

Background

ISA

ISA + Contract

Microarchitecture

Software

implement

target

side-
channel
side-
channel

target

implement &
satisfy

side-
channel

2/22

Background

ISA

ISA + Contract

Microarchitecture

Software

implement

target

side-
channel

side-
channel

target

implement &
satisfy

side-
channel

2/22

Background

ISA

ISA + Contract

Microarchitecture

Software

implement

target

side-
channel
side-
channel

target

implement &
satisfy

side-
channel

2/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation
Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)
MARCH ⊨ADV CTR

3/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation

Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)
MARCH ⊨ADV CTR

3/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation

Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)
MARCH ⊨ADV CTR

3/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation

Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)
MARCH ⊨ADV CTR

3/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation
Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)
MARCH ⊨ADV CTR

3/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation
Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)
MARCH ⊨ADV CTR

3/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation
Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)

MARCH ⊨ADV CTR

3/22

What are HW/SW Contracts?

Microarchitecture

Microarchitecture

ISA Simulation

ISA Simulation
Adversary

Contract

0010 0101 110100111

0010 0111 110100111

111110001 0110 1010

111110001 0000 1010

P1

P2

ADV(P1) ̸= ADV(P2)⇒ CTR(P1) ̸= CTR(P2)
MARCH ⊨ADV CTR

3/22

Contract Generation

4/22

Definition (Hardware-Software Contract Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements
ISA, and an adversary model ADV suitable for MARCH, find a hardware-software contract
CTR that satisfies the following:

1. Contract satisfaction:
MARCH ⊨ADV CTR

2. Least contract:

∀CTR′. MARCH ⊨ADV CTR′

⇒ CTR ≤ CTR′

5/22

Definition (Hardware-Software Contract Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements
ISA, and an adversary model ADV suitable for MARCH, find a hardware-software contract
CTR that satisfies the following:

1. Contract satisfaction:
MARCH ⊨ADV CTR

2. Least contract:

∀CTR′. MARCH ⊨ADV CTR′

⇒ CTR ≤ CTR′

5/22

Definition (Hardware-Software Contract Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements
ISA, and an adversary model ADV suitable for MARCH, find a hardware-software contract
CTR that satisfies the following:

1. Contract satisfaction:
MARCH ⊨ADV CTR

2. Least contract:

∀CTR′. MARCH ⊨ADV CTR′

⇒ CTR ≤ CTR′

5/22

Definition (Hardware-Software Contract Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements
ISA, an adversary model ADV suitable for MARCH, and a function p : C→ N, find a
hardware-software contract CTR that satisfies the following:

1. Contract satisfaction:
MARCH ⊨ADV CTR

2. Most precise contract:

∀CTR′. MARCH ⊨ADV CTR′

⇒p(CTR) ≤ p(CTR′)

6/22

Determining p

• Select least contract if a least contract exists

• Select a minimal contract

• Additional parameter: Precision of the contract

Precision =
True Positive

Predicted Positive
̂︀= Adversary Distinguishable

Contract Distinguishable

7/22

Determining p

• Select least contract if a least contract exists

• Select a minimal contract

• Additional parameter: Precision of the contract

Precision =
True Positive

Predicted Positive
̂︀= Adversary Distinguishable

Contract Distinguishable

7/22

Determining p

• Select least contract if a least contract exists

• Select a minimal contract

• Additional parameter: Precision of the contract

Precision =
True Positive

Predicted Positive
̂︀= Adversary Distinguishable

Contract Distinguishable

7/22

Determining p

• Select least contract if a least contract exists

• Select a minimal contract

• Additional parameter: Precision of the contract

Precision =
True Positive

Predicted Positive
̂︀= Adversary Distinguishable

Contract Distinguishable

7/22

Determining p

• Select least contract if a least contract exists

• Select a minimal contract

• Additional parameter: Precision of the contract

Precision =
True Positive

Predicted Positive
̂︀= Adversary Distinguishable

Contract Distinguishable

7/22

Definition (Hardware-Software Contract Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements
ISA, an adversary model ADV suitable for MARCH, and a function p : C→ N find a
hardware-software contract CTR that satisfies the following:

1. Contract satisfaction:
MARCH ⊨ADV CTR

2. Most precise contract:

∀CTR′. MARCH ⊨ADV CTR′

⇒p(CTR) ≤ p(CTR′)

8/22

Definition (Hardware-Software Contract Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements
ISA, an adversary model ADV suitable for MARCH, a space of possible contracts C, and a
function p : C→ N find a hardware-software contract CTR∈ C that satisfies the following:

1. Contract satisfaction:
MARCH ⊨ADV CTR

2. Most precise contract:

∀CTR′∈ C. MARCH ⊨ADV CTR′

⇒p(CTR) ≤ p(CTR′)

8/22

Contract Template C

• Instruction-Level Contract

→ Leakage associated to the executed instruction

• Various elements of the architectural state could leak: immediate, registers, memory

• Observation: Instructions of the same type usually behave similarly

• Idea: Leak certain architectural values depending on the type of the executed
instruction

• Example: LW: IMM, REG_RS1

9/22

Contract Template C

• Instruction-Level Contract

→ Leakage associated to the executed instruction

• Various elements of the architectural state could leak: immediate, registers, memory

• Observation: Instructions of the same type usually behave similarly

• Idea: Leak certain architectural values depending on the type of the executed
instruction

• Example: LW: IMM, REG_RS1

9/22

Contract Template C

• Instruction-Level Contract
→ Leakage associated to the executed instruction

• Various elements of the architectural state could leak: immediate, registers, memory

• Observation: Instructions of the same type usually behave similarly

• Idea: Leak certain architectural values depending on the type of the executed
instruction

• Example: LW: IMM, REG_RS1

9/22

Contract Template C

• Instruction-Level Contract
→ Leakage associated to the executed instruction

• Various elements of the architectural state could leak: immediate, registers, memory

• Observation: Instructions of the same type usually behave similarly

• Idea: Leak certain architectural values depending on the type of the executed
instruction

• Example: LW: IMM, REG_RS1

9/22

Contract Template C

• Instruction-Level Contract
→ Leakage associated to the executed instruction

• Various elements of the architectural state could leak: immediate, registers, memory

• Observation: Instructions of the same type usually behave similarly

• Idea: Leak certain architectural values depending on the type of the executed
instruction

• Example: LW: IMM, REG_RS1

9/22

Contract Template C

• Instruction-Level Contract
→ Leakage associated to the executed instruction

• Various elements of the architectural state could leak: immediate, registers, memory

• Observation: Instructions of the same type usually behave similarly

• Idea: Leak certain architectural values depending on the type of the executed
instruction

• Example: LW: IMM, REG_RS1

9/22

Contract Template C

• Instruction-Level Contract
→ Leakage associated to the executed instruction

• Various elements of the architectural state could leak: immediate, registers, memory

• Observation: Instructions of the same type usually behave similarly

• Idea: Leak certain architectural values depending on the type of the executed
instruction

• Example: LW: IMM, REG_RS1

9/22

Definition (Hardware-Software Contract Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements ISA,
an adversary model ADV suitable for MARCH, a space of possible contracts C, and a function
p : C→ N, find a hardware-software contract CTR ∈ C that satisfies the following:

1. Contract satisfaction:
MARCH ⊨ADV CTR

2. Most precise contract:

∀CTR′ ∈ C. MARCH ⊨ADV CTR′

⇒p(CTR) ≤ p(CTR′)

10/22

Definition (Hardware-Software Contract Candidate Generation)

Given an instruction set architecture ISA, a microarchitecture MARCH that implements
ISA, an adversary model ADV suitable for MARCH, a space of possible contracts C, a
function p : C→ N, and a set of test cases TC, find a hardware-software contract
candidate CTR ∈ C that satisfies the following:

1. Contract candidate satisfaction:

MARCH ⊨TC
ADV

CTR

2. Most precise contract:

∀CTR′ ∈ C. MARCH ⊨TC
ADV

CTR′

⇒p(CTR) ≤ p(CTR′)

10/22

Algorithm
Distinguishable, Indistinguishable← EmptyList()
for all TC in TC[] do

TRACE, ADVDistinguishable← simulate(MARCH, ADV, TC)
OBS← analyze(TRACE)
if ADVDistinguishable then

Distinguishable.append(OBS)
else

Indistinguishable.append(OBS)
end if

end for
CTR← compute(Distinguishable, Indistinguishable)

11/22

Algorithm
Distinguishable, Indistinguishable← EmptyList()
for all TC in TC[] do

TRACE, ADVDistinguishable← simulate(MARCH, ADV, TC)
OBS← analyze(TRACE)
if ADVDistinguishable then

Distinguishable.append(OBS)
else

Indistinguishable.append(OBS)
end if

end for
CTR← compute(Distinguishable, Indistinguishable)

11/22

Algorithm
Distinguishable, Indistinguishable← EmptyList()
for all TC in TC[] do

TRACE, ADVDistinguishable← simulate(MARCH, ADV, TC)
OBS← analyze(TRACE)
if ADVDistinguishable then

Distinguishable.append(OBS)
else

Indistinguishable.append(OBS)
end if

end for
CTR← compute(Distinguishable, Indistinguishable)

11/22

Algorithm
Distinguishable, Indistinguishable← EmptyList()
for all TC in TC[] do

TRACE, ADVDistinguishable← simulate(MARCH, ADV, TC)
OBS← analyze(TRACE)
if ADVDistinguishable then

Distinguishable.append(OBS)
else

Indistinguishable.append(OBS)
end if

end for
CTR← compute(Distinguishable, Indistinguishable)

11/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type

add or

. . .

RS1

r4 r8

RS2

r2 r9

REG_RS1

0xAB 0x12

Core 2

type

add or

. . .

RS1

r4 r10

RS2

r2 r9

REG_RS1

0xCD 0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type

add or

. . .

RS1

r4 r8

RS2

r2 r9

REG_RS1

0xAB 0x12

Core 2

type

add or

. . .

RS1

r4 r10

RS2

r2 r9

REG_RS1

0xCD 0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type

add or

. . .

RS1

r4 r8

RS2

r2 r9

REG_RS1

0xAB 0x12

Core 2

type

add or

. . .

RS1

r4 r10

RS2

r2 r9

REG_RS1

0xCD 0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type

add or

. . .

RS1

r4 r8

RS2

r2 r9

REG_RS1

0xAB 0x12

Core 2

type

add or

. . .

RS1

r4 r10

RS2

r2 r9

REG_RS1

0xCD 0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type add

or

. . .

RS1 r4

r8

RS2 r2

r9

REG_RS1 0xAB

0x12

Core 2

type add

or

. . .

RS1 r4

r10

RS2 r2

r9

REG_RS1 0xCD

0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type add

or

. . .

RS1 r4

r8

RS2 r2

r9

REG_RS1 0xAB

0x12

Core 2

type add

or

. . .

RS1 r4

r10

RS2 r2

r9

REG_RS1 0xCD

0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type add or

. . .

RS1 r4 r8
RS2 r2 r9
REG_RS1 0xAB 0x12

Core 2

type add or

. . .

RS1 r4 r10
RS2 r2 r9
REG_RS1 0xCD 0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type add or

. . .

RS1 r4 r8
RS2 r2 r9
REG_RS1 0xAB 0x12

Core 2

type add or

. . .

RS1 r4 r10
RS2 r2 r9
REG_RS1 0xCD 0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Extraction of Possible Observations

• Extract the sequence of architectural states from the trace

• Compare values according to the contract template

Core 1

type add or

. . .
RS1 r4 r8
RS2 r2 r9
REG_RS1 0xAB 0x12

Core 2

type add or

. . .
RS1 r4 r10
RS2 r2 r9
REG_RS1 0xCD 0x12

Possible Observations:

• ADD: REG_RS1

• OR: RS1

• . . .

12/22

Algorithm
Distinguishable, Indistinguishable← EmptyList()
for all TC in TC[] do

TRACE, ADVDistinguishable← simulate(MARCH, ADV, TC)
OBS← analyze(TRACE)
if ADVDistinguishable then

Distinguishable.append(OBS)
else

Indistinguishable.append(OBS)
end if

end for
CTR← compute(Distinguishable, Indistinguishable)

13/22

Algorithm
Distinguishable, Indistinguishable← EmptyList()
for all TC in TC[] do

TRACE, ADVDistinguishable← simulate(MARCH, ADV, TC)
OBS← analyze(TRACE)
if ADVDistinguishable then

Distinguishable.append(OBS)
else

Indistinguishable.append(OBS)
end if

end for
CTR← compute(Distinguishable, Indistinguishable)

13/22

Algorithm
Distinguishable, Indistinguishable← EmptyList()
for all TC in TC[] do

TRACE, ADVDistinguishable← simulate(MARCH, ADV, TC)
OBS← analyze(TRACE)
if ADVDistinguishable then

Distinguishable.append(OBS)
else

Indistinguishable.append(OBS)
end if

end for
CTR← compute(Distinguishable, Indistinguishable)

13/22

Evaluation

14/22

Examined Cores

Ibex

• RV32IMC ISA, I and M evaluated

• 3 Stages

• Optional caches (disabled for
evaluation)

CVA6

• RV32IMA ISA, I and M evaluated

• 6 stages

• In-order CPU

• Instruction Cache

• Branch prediction

• Multiple execution units

• Ready for FPGA deployment

15/22

Examined Cores

Ibex

• RV32IMC ISA, I and M evaluated

• 3 Stages

• Optional caches (disabled for
evaluation)

CVA6

• RV32IMA ISA, I and M evaluated

• 6 stages

• In-order CPU

• Instruction Cache

• Branch prediction

• Multiple execution units

• Ready for FPGA deployment

15/22

Examined Cores

Ibex

• RV32IMC ISA, I and M evaluated

• 3 Stages

• Optional caches (disabled for
evaluation)

CVA6

• RV32IMA ISA, I and M evaluated

• 6 stages

• In-order CPU

• Instruction Cache

• Branch prediction

• Multiple execution units

• Ready for FPGA deployment

15/22

Examined Cores

Ibex

• RV32IMC ISA, I and M evaluated

• 3 Stages

• Optional caches (disabled for
evaluation)

CVA6

• RV32IMA ISA, I and M evaluated

• 6 stages

• In-order CPU

• Instruction Cache

• Branch prediction

• Multiple execution units

• Ready for FPGA deployment

15/22

Sets of Test Cases

Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

16/22

Sensitivity Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

Sensitivity =
True Positive

Actual Positive 17/22

Precision Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

Precision =
True Positive

Predicted Positive 18/22

The Generated Contract Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

Example: Loads on the Ibex core

LW: IMM
LW: REG_RS1

Example: Branches on the CVA6 core:

BGE: IMM
BGE: REG_RS1
BGE: REG_RS2

19/22

The Generated Contract Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

Example: Loads on the Ibex core

LW: IMM
LW: REG_RS1

Example: Branches on the CVA6 core:

BGE: IMM
BGE: REG_RS1
BGE: REG_RS2

19/22

Computation Time

On an Intel Core i7-8700 CPU @ 3.20GHz with 12 threads and 16 GB of RAM:

Ibex CVA6
Compilation Time

3.4s 20.0s

Simulation Time1

83ms 2.8s

Extraction of Possible Observations1

3ms 21ms

Contract Candidate Computation2

3.2s 1.3s

Total Contract Candidate Generation Time2

7.5min 3.25h

1 on average, per test case. 2 using the training set with 20,000 test cases, multi-threaded.

20/22

Computation Time

On an Intel Core i7-8700 CPU @ 3.20GHz with 12 threads and 16 GB of RAM:

Ibex CVA6
Compilation Time 3.4s

20.0s

Simulation Time1 83ms

2.8s

Extraction of Possible Observations1 3ms

21ms

Contract Candidate Computation2 3.2s

1.3s

Total Contract Candidate Generation Time2

7.5min 3.25h

1 on average, per test case. 2 using the training set with 20,000 test cases, multi-threaded.

20/22

Computation Time

On an Intel Core i7-8700 CPU @ 3.20GHz with 12 threads and 16 GB of RAM:

Ibex CVA6
Compilation Time 3.4s

20.0s

Simulation Time1 83ms

2.8s

Extraction of Possible Observations1 3ms

21ms

Contract Candidate Computation2 3.2s

1.3s

Total Contract Candidate Generation Time2 7.5min

3.25h

1 on average, per test case. 2 using the training set with 20,000 test cases, multi-threaded.

20/22

Computation Time

On an Intel Core i7-8700 CPU @ 3.20GHz with 12 threads and 16 GB of RAM:

Ibex CVA6
Compilation Time 3.4s 20.0s
Simulation Time1 83ms 2.8s
Extraction of Possible Observations1 3ms 21ms
Contract Candidate Computation2 3.2s 1.3s
Total Contract Candidate Generation Time2 7.5min

3.25h

1 on average, per test case. 2 using the training set with 20,000 test cases, multi-threaded.

20/22

Computation Time

On an Intel Core i7-8700 CPU @ 3.20GHz with 12 threads and 16 GB of RAM:

Ibex CVA6
Compilation Time 3.4s 20.0s
Simulation Time1 83ms 2.8s
Extraction of Possible Observations1 3ms 21ms
Contract Candidate Computation2 3.2s 1.3s
Total Contract Candidate Generation Time2 7.5min 3.25h

1 on average, per test case. 2 using the training set with 20,000 test cases, multi-threaded.

20/22

Conclusion

• Contract generation is generally possible

• Few test cases result in a relatively accurate contract,
however, the contract slowly keeps getting better

• The current contract template limits the precision

21/22

Conclusion

• Contract generation is generally possible

• Few test cases result in a relatively accurate contract,
however, the contract slowly keeps getting better

• The current contract template limits the precision

21/22

Conclusion

• Contract generation is generally possible

• Few test cases result in a relatively accurate contract,
however, the contract slowly keeps getting better

• The current contract template limits the precision

21/22

Conclusion

• Contract generation is generally possible

• Few test cases result in a relatively accurate contract,
however, the contract slowly keeps getting better

• The current contract template limits the precision

21/22

Future Work

• Improved contract templates

– alignedness of values
– branch decisions

• Different test case generation methods

– loop structures
– load store sequences

Thank you for your attention!

22/22

Future Work

• Improved contract templates
– alignedness of values
– branch decisions

• Different test case generation methods

– loop structures
– load store sequences

Thank you for your attention!

22/22

Future Work

• Improved contract templates
– alignedness of values
– branch decisions

• Different test case generation methods
– loop structures
– load store sequences

Thank you for your attention!

22/22

Future Work

• Improved contract templates
– alignedness of values
– branch decisions

• Different test case generation methods
– loop structures
– load store sequences

Thank you for your attention!

22/22

22/22

Interesting Numbers Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

Ibex CVA6
Sensitivity 99.64% 97.38%
Precision 31.59% 12.00%
Accuracy 84.80% 57.15%
True Positive 7,010 5,427
False Positive 15,178 39,776
True Negative 77,787 51,724
False Negative 25 146

22/22

False Positives on the CVA6 Core Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

r27 ← LB mem[r31 + 3792]
SW mem[r6 + 3169] ← r27

r27 ← LB mem[r31 + 3792]
SW mem[r6 + 3169] ← r23

Only possible observation: SW: RS2
22/22

Test Case Generation

Each test case has two programs - one for each core.

• Create a random initial architectural state

• Generate a random instruction

• Derive two similar programs from this instruction

Example:

Generated instruction: add rd ← rs1 + rs2

Observation: REG_RS1

addi rs1 ← r0 + x
add rd ← rs1 + rs2

addi rs1 ← r0 + y
add rd ← rs1 + rs2

22/22

Test Case Generation

Each test case has two programs - one for each core.

• Create a random initial architectural state

• Generate a random instruction

• Derive two similar programs from this instruction

Example:

Generated instruction: add rd ← rs1 + rs2

Observation: REG_RS1

addi rs1 ← r0 + x
add rd ← rs1 + rs2

addi rs1 ← r0 + y
add rd ← rs1 + rs2

22/22

Test Case Generation

Each test case has two programs - one for each core.

• Create a random initial architectural state

• Generate a random instruction

• Derive two similar programs from this instruction

Example:

Generated instruction: add rd ← rs1 + rs2

Observation: REG_RS1

addi rs1 ← r0 + x
add rd ← rs1 + rs2

addi rs1 ← r0 + y
add rd ← rs1 + rs2

22/22

Test Case Generation

Each test case has two programs - one for each core.

• Create a random initial architectural state

• Generate a random instruction

• Derive two similar programs from this instruction

Example:

Generated instruction: add rd ← rs1 + rs2

Observation: REG_RS1

addi rs1 ← r0 + x
add rd ← rs1 + rs2

addi rs1 ← r0 + y
add rd ← rs1 + rs2

22/22

Test Case Generation

Each test case has two programs - one for each core.

• Create a random initial architectural state

• Generate a random instruction

• Derive two similar programs from this instruction

Example:

Generated instruction: add rd ← rs1 + rs2

Observation: REG_RS1

addi rs1 ← r0 + x
add rd ← rs1 + rs2

addi rs1 ← r0 + y
add rd ← rs1 + rs2

22/22

Test Case Generation

Each test case has two programs - one for each core.

• Create a random initial architectural state

• Generate a random instruction

• Derive two similar programs from this instruction

Example:

Generated instruction: add rd ← rs1 + rs2

Observation: REG_RS1

addi rs1 ← r0 + x
add rd ← rs1 + rs2

addi rs1 ← r0 + y
add rd ← rs1 + rs2

22/22

Contract Computation

Defining p:

p(CTR) = |{(μ, μ′) ∈MTC | CTR(ARCH(μ)) ̸= CTR(ARCH(μ′))}|

Formalizing contract computation:

∀d ∈ Dist. (
∑︁

o∈obs(d)

so) ≥ 1 Contract Satisfaction

∀i ∈ Indist.
⋁︁

o∈obs(i)

so⇒ ci False Positives

min(
∑︁

i∈Indist.
ci) Optimize precision

22/22

Contract Computation

Defining p:

p(CTR) = |{(μ, μ′) ∈MTC | CTR(ARCH(μ)) ̸= CTR(ARCH(μ′))}|

Formalizing contract computation:

∀d ∈ Dist. (
∑︁

o∈obs(d)

so) ≥ 1 Contract Satisfaction

∀i ∈ Indist.
⋁︁

o∈obs(i)

so⇒ ci False Positives

min(
∑︁

i∈Indist.
ci) Optimize precision

22/22

Contract Computation

Defining p:

p(CTR) = |{(μ, μ′) ∈MTC | CTR(ARCH(μ)) ̸= CTR(ARCH(μ′))}|

Formalizing contract computation:

∀d ∈ Dist. (
∑︁

o∈obs(d)

so) ≥ 1 Contract Satisfaction

∀i ∈ Indist.
⋁︁

o∈obs(i)

so⇒ ci False Positives

min(
∑︁

i∈Indist.
ci) Optimize precision

22/22

Contract Computation

Defining p:

p(CTR) = |{(μ, μ′) ∈MTC | CTR(ARCH(μ)) ̸= CTR(ARCH(μ′))}|

Formalizing contract computation:

∀d ∈ Dist. (
∑︁

o∈obs(d)

so) ≥ 1 Contract Satisfaction

∀i ∈ Indist.
⋁︁

o∈obs(i)

so⇒ ci False Positives

min(
∑︁

i∈Indist.
ci) Optimize precision

22/22

Contract Computation

Defining p:

p(CTR) = |{(μ, μ′) ∈MTC | CTR(ARCH(μ)) ̸= CTR(ARCH(μ′))}|

Formalizing contract computation:

∀d ∈ Dist. (
∑︁

o∈obs(d)

so) ≥ 1 Contract Satisfaction

∀i ∈ Indist.
⋁︁

o∈obs(i)

so⇒ ci False Positives

min(
∑︁

i∈Indist.
ci) Optimize precision

22/22

Contract Computation

Defining p:

p(CTR) = |{(μ, μ′) ∈MTC | CTR(ARCH(μ)) ̸= CTR(ARCH(μ′))}|

Formalizing contract computation:

∀d ∈ Dist. (
∑︁

o∈obs(d)

so) ≥ 1 Contract Satisfaction

∀i ∈ Indist.
⋁︁

o∈obs(i)

so⇒ ci False Positives

min(
∑︁

i∈Indist.
ci) Optimize precision

22/22

Contract Computation

Defining p:

p(CTR) = |{(μ, μ′) ∈MTC | CTR(ARCH(μ)) ̸= CTR(ARCH(μ′))}|

Formalizing contract computation:

∀d ∈ Dist. (
∑︁

o∈obs(d)

so) ≥ 1 Contract Satisfaction

∀i ∈ Indist.
⋁︁

o∈obs(i)

so⇒ ci False Positives

min(
∑︁

i∈Indist.
ci) Optimize precision

22/22

Precision & Accuracy Size Adversary Distinguishable
Ibex CVA6

Training Set 20,000 1421 7.1% 1055 5.2%
Evaluation Set 100,000 7035 7.0% 5573 5.5%

Precision =
True Positive

Predicted Positive
Accuracy =

Correctly Predicted

Total

22/22

